Accelerating iterative coordinate descent using a stored system matrix
نویسندگان
چکیده
منابع مشابه
Feature Clustering for Accelerating Parallel Coordinate Descent
Large-scale `1-regularized loss minimization problems arise in high-dimensional applications such as compressed sensing and high-dimensional supervised learning, including classification and regression problems. High-performance algorithms and implementations are critical to efficiently solving these problems. Building upon previous work on coordinate descent algorithms for `1-regularized probl...
متن کاملImproved Convergence of Iterative Ontology Alignment using Block-Coordinate Descent
A wealth of ontologies, many of which overlap in their scope, has made aligning ontologies an important problem for the semantic Web. Consequently, several algorithms now exist for automatically aligning ontologies, with mixed success in their performances. Crucial challenges for these algorithms involve scaling to large ontologies, and as applications of ontology alignment evolve, performing t...
متن کاملSpeeding Up Iterative Ontology Alignment using Block-Coordinate Descent
In domains such as biomedicine, ontologies are prominently utilized for annotating data. Consequently, aligning ontologies facilitates integrating data. Several algorithms exist for automatically aligning ontologies with diverse levels of performance. As alignment applications evolve and exhibit online run time constraints, performing the alignment in a reasonable amount of time without comprom...
متن کاملPenalized Bregman Divergence Estimation via Coordinate Descent
Variable selection via penalized estimation is appealing for dimension reduction. For penalized linear regression, Efron, et al. (2004) introduced the LARS algorithm. Recently, the coordinate descent (CD) algorithm was developed by Friedman, et al. (2007) for penalized linear regression and penalized logistic regression and was shown to gain computational superiority. This paper explores...
متن کاملA Coordinate Descent Method for Robust Matrix Factorization and Applications
Matrix factorization methods are widely used for extracting latent factors for low rank matrix completion and rating prediction problems arising in recommender systems of on-line retailers. Most of the existing models are based on L2 fidelity (quadratic functions of factorization error). In this work, a coordinate descent (CD) method is developed for matrix factorization under L1 fidelity so th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Medical Physics
سال: 2019
ISSN: 0094-2405,2473-4209
DOI: 10.1002/mp.13543